Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models
نویسندگان
چکیده
منابع مشابه
Sonification of Markov Chain Monte Carlo Simulations
Markov chain Monte Carlo (McMC) simulation is a popular computational tool for making inferences from complex, high-dimensional probability densities. Given a particular target density p, the idea behind this technique is to simulate a Markov chain that has p as its stationary distribution. To be successful, the chain needs to be run long enough so that the distribution of the current draw is c...
متن کاملEstimating viral infection parameters using Markov Chain Monte Carlo simulations
Given a mathematical model quantifying the viral infection of pandemic influenza H1N1pdm09-H275 wild type (WT) and H1N1pdm09-H275Y mutant (MUT) strains, we describe a simple method of estimating the model’s constant parameters using Monte Carlo methods. Monte Carlo parameter estimation methods present certain advantages over the bootstrapping methods previously used in such studies: the result ...
متن کاملEnsemble preconditioning for Markov chain Monte Carlo simulation
We describe parallel Markov chain Monte Carlo methods that propagate a collective ensemble of paths, with local covariance information calculated from neighboring replicas. The use of collective dynamics eliminates multiplicative noise and stabilizes the dynamics thus providing a practical approach to difficult anisotropic sampling problems in high dimensions. Numerical experiments with model p...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملMarkov Chain Monte Carlo
This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2006
ISSN: 1064-8275,1095-7197
DOI: 10.1137/050628568